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1. Introduction 

Combat requires systems that respond rapidly, efficiently, and safely while 
attaining mission objectives in situations that are increasingly complex (Barnes  
et al. 2014). “Smart” technologies are becoming ubiquitous in the modern world, 
changing the relationship of humans to their machines (Economist, 2016). In 
particular, autonomous systems are being developed for a wide variety of civilian 
and military applications to improve safety and reduce manpower restrictions 
(Purdy 2008; Greenemeier 2010; Murphy and  Burke 2010;  Osborn 2011; O’Dell 
2013; Atherton 2015; Pellerin 2015; Brewster 2016). Before proceeding with the 
discussion of autonomous systems, it is important to note that using the term 
“autonomy” in military environments is possibly misleading. The dictionary 
definition of autonomy is “not subject to control from outside; independent, 
existing and functioning as an independent organism” (Dictionary.com 2016). 
Because of the uncertainties of the battlefield and the importance of human life, all 
combat systems are subject to ultimate human control (Chen and Barnes 2014; 
Endsley 2015b). Therefore, we define autonomous software agents in terms that are 
similar to the role that humans play in a military environment. The software agent 
is an intelligent nonhuman agent (IA) that has clear objectives, able to monitor its 
environment, and autonomous in the sense that it can generate courses of action 
(COAs) to obtain its objectives (Russell and Novrig 2009). However, as discussed 
in the following, the IA is always subordinate to its human supervisor much as a 
Soldier is subordinate to its commander. 

Traditionally, humans and automated systems have been assigned to separate 
functions, but recent advances permit a fluid relationship approximating human 
teaming paradigms (Lyons and Stokes 2012; Cummings 2014). Various 
technologies are being designed to interact and communicate with human operators 
to ensure decision-making that is shared, flexible, and still human-centric (Fisher 
et al. 2007; Goodrich 2010; Goodrich et al. 2013; Chen and Barnes 2014). The 
differences in the following techniques involve the relative roles of humans and 
agents.  

Adaptive systems monitor the environment or the operator’s cognitive state for 
triggering events. During overload or emergencies, control of system functions are 
automated. Similarly, the IA software relinquishes control to the operator during 
normal operations. Human control is ensured by an operator-initiated contract prior 
to the mission that defines decision precedence between the IA and the operator  
(Parasuraman et al. 2007; de Visser et al. 2011). 

In contrast, adjustable autonomy (also referred to as adaptable autonomy) is 
automation that is instantiated at the discretion of the human during the mission. It 



 

Approved for public release; distribution is unlimited. 

2 

may take the form of “plays”, which are predetermined software solutions that the 
operator “calls” during the mission to address immediate tactical concerns (Miller 
and Parasuraman 2007). 

In this report we will discuss mixed-initiative systems, in which the decision space 
is shared between IAs and human operators in real time. Mixed-initiative systems 
can incorporate both adaptive and adjustable software as part of the joint decision-
making process (Hardin and Goodrich 2009, Goodrich 2010; Goodrich et al. 2013; 
Chen and Barnes 2014; Barnes et al. 2015).  

To summarize, we are discussing mixed initiative autonomy wherein humans and 
IAs share decision-making. The IA has a degree of autonomy and communicates 
with its human supervisor. The focus of this report is on the decision-making 
relationship between IAs and its human supervisor(s) in future battle spaces that 
are dynamic, dangerous, and complex (Stone 2012). We will discuss human-agent 
teams in military environments as they relate to multiple systems, trust, 
transparency, agent architectures, 2-way communications, and the type of 
interfaces showing current progress and indicating possible future research 
opportunities (Stone 2012; Cummings 2014; Chen and Barnes 2014; Barnes et al. 
2014; Endsley 2015a). 

1.1 Military Constraints 

The use of autonomy by the military raises special issues regarding rules of 
engagement (rules stipulating the circumstances under which use of weapons 
systems is permitted) beyond those involved in civilian applications (Defense 
Science Board 2012; Jentsch and Fincannon 2012). Many of these issues center on 
the trade-off between the utility of autonomy and its lethality (Singer 2010). As the 
development of technology affords new capabilities, there is ongoing concern that 
new autonomous capabilities may improve combat effectiveness at the risk of 
fratricide and civilian casualties (Barnes et al. 2014; Tiron 2003). The “fog of war” 
makes accidents inevitable, but at least initially the public will be far less forgiving 
if computer errors cause fatalities than if humans make the same mistakes. Mica 
Endsley (2015b), in her role as a Chief Scientist of the US Air Force, stresses that 
Department of Defense (DOD) Directive 3000.09 (2012) mandates safeguards for 
autonomous weapons, as shown in the following: 

• “Semi-autonomous weapon systems that are onboard or integrated with 
unmanned platforms must be designed such that, in the event of degraded 
or lost communications, the system does not autonomously select and 
engage individual targets or specific target groups that have not been 
previously selected by an authorized human operator.”   
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• “The system design . . . addresses and minimizes the probability or 
consequences of failures that could lead to unintended engagements or to 
loss of control of the system.”  

• “In order for operators to make informed and appropriate decisions in 
engaging targets, the interface between people and machines for 
autonomous and semi-autonomous weapon systems shall: (a) be readily 
understandable to trained operators, (b) provide traceable feedback on 
system status, and (c) provide clear procedures for trained operators to 
activate and deactivate system functions.” 

These rules reinforce doctrine that military decisions are human responsibilities and 
operators must have a clear-cut understanding of the consequences of supervising 
autonomous systems. Furthermore, Endsley (2015b) concludes that autonomy must 
be integrated into the force structure. This entails training and the development of 
interfaces that make the autonomy understandable to ensure human-centered 
systems. Similarly, the Defense Science Board (DSB) (2012) emphasizes the 
importance of designing autonomy that fits into the network of military capabilities 
so as not to introduce “brittle” systems that have a negative impact on overall 
mission effectiveness. The DSB also stresses the importance of enablers of 
autonomy such as naturalistic interfaces to improve collaboration, trust, and 
situation awareness (SA) while reducing the Soldier’s physical and cognitive 
workload.  

1.2 Mixed-Initiative Systems and a General Framework 

Human-agent teaming is an important concept because it implies a personal 
relationship between the agent and the human. Ideally, the relationship will require 
bi-directional communications and a common worldview. IA architecture and its 
ability to communicate with humans is still primitive but it is progressing beyond 
the stage of literal translations and moving toward interpretation in terms of intent 
(Jurafsky and Martin 2009; Lomas et al. 2012; Wang et al. 2016). Figure 1 is a 
nominal human-agent framework intended to provide an overview of the issues that 
are discussed in the rest of the report.   

 



 

Approved for public release; distribution is unlimited. 

4 

 

Fig. 1 Characteristics of human-agent shared decision-making 

This framework will be used to motivate discussions of the various features 
influencing human-agent shared and separate decision spaces. The advantage of a 
human-agent partnership is that each element has its own strengths and weaknesses, 
and together they have the potential of being more effective than the sum of their 
parts (Chen and Barnes 2014). For example, the human will have greater meta-
knowledge of political implications and changing strategic objectives, whereas the 
agent may have precise algorithms for specific technical challenges. On the other 
hand, there are problems in combining the elements into a cohesive decision 
structure. There are situations when human trust is misaligned with the agent’s 
reliability, causing humans to either over- or under-trust the agent’s decisions 
(Parasuraman and Riley 1997; Dzindolet et al. 2003; Lee and See 2004; Beck et al. 
2007; Mercado et al. 2016). In similar fashion, the agent’s world model might be 
misaligned with the operator’s mental model and could misinterpret the intent of 
operator’s commands (Chen and Barnes 2014). 

The user interface needs to be transparent so that agents and humans understand 
each other’s reasoning and uncertainties while making joint decisions (Lyons and 
Havig 2014). Creating mutual understanding requires calibrating the trust of the 
human operator and providing the IA with an ability to infer human intent (Mercado 
et al. 2016). There are distinct features of humans such as affect as well as cultural 
norms that must be accounted for in the agent’s behavioral repertoire (e.g., rules of 
etiquette) (Parasuraman and Miller 2004). To ensure safe operations, it is important 
to have protocols that address emergencies. For example, adaptive mechanisms 
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would permit the IA to react to dangerous situations such as collision avoidance 
without waiting for operator permission. Likewise, humans can take back authority 
for emergency situations (e.g., prevent fratricide) (Chen et al. 2010). It is crucial to 
define control procedures that are flexible but are consonant with operator’s intent.  
Soldiers are encouraged to show initiative as long as they understand the intent of 
their original orders. 

The remainder of this report discusses current research sponsored by the US Army 
Research Laboratory (ARL) (predominantly conducted in military environments) 
that addresses the following 5 issues: 1) control of multiple systems using 
intelligent agents, 2) requirements for developing transparency and appropriate 
trust necessary for human-agent interactions, 3) agent architectures and their 
implications for human-agent communication, 4) 2-way human-agent 
communications, and 5) naturalistic interfaces and their importance for efficient 
shared decision-making. In addition, we discuss areas of future research and the 
shortcomings of our current understanding of human-agent shared decision-
making.   

1.3 The Conundrum of Control 

As mentioned previously, autonomy implies that the agent controls its own actions, 
but in a seeming contradiction we argue that ultimate control resides with the 
human operator. In the mixed initiative paradigm, it is necessary to develop 
protocols that dictate when the human, the agent, or both (collaborative) have 
decision precedence. The protocols can be mission-specific or be general in nature. 
However, in rapidly changing environments, human concurrence with agent 
decisions may not be practical. This is particularly true for multi-system control 
where the number of elements and the difficulties of controlling each element 
makes effective supervision difficult, if not impossible (Miller 1956; Lewis and 
Wang 2010; Schulte and Meitinger 2010, Chen et al. 2011; Lewis 2013). Metrics 
such as neglect time (time estimates of when supervisory attention is not needed 
for specific agents) and interaction time (average time that an operator needs to 
interact with an agent) are only useful if scheduling of attention by n-supervisors 
monitoring n-elements is predictable (Goodrich 2010; Goodrich et al. 2013). 
Combat by its nature is volatile and uncertain, making scheduling impractical in 
many situations. 

A variety of strategies have proven effective in enhancing mixed-initiative 
decision-making. Some cognitive tasks are more amenable to automation than 
others. For example, information filtering/selection appears to be a good candidate 
for automation algorithms, but selecting an action with important consequences 
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usually requires human oversight (Parasuraman et al. 2000). There are also cases 
where autonomy can be assigned to various functions that are housekeeping 
(convoy separation) or because of time constraints (collision avoidance) (Wright  
et al. 2014). In other time-constrained situations, decision authority can be divided. 
For an incoming missile, an operator has the ability to override autonomy until a 
critical time limit is reached, after which missile defense systems kick in 
automatically (Parasuraman et al. 2007). In still other situations, such as identifying 
the importance of specific objects, the IA may detect an object but defer to the 
human to assess its significance (Jentsch and Fincannon 2012; Barnes et al. 2014). 
Autonomy needs to be flexible; authority resides with the operator but 
circumstances may require the IA to take the initiative.   

The DSB (2012) suggested that autonomy will be particularly useful when an 
operator must interact with multiple assets. A caveat is that the number of assets 
controlled must be limited to that which can be managed effectively by a single 
human (Lewis and Wang 2010). To minimize control issues, ARL researchers are 
investigating an IA (Section 2) that acts as an intermediate supervisor by 
monitoring subordinate systems and by suggesting COA changes when unexpected 
events occur during the mission (Chen et al. 2011; Chen and Barnes 2012a,b; Chen 
and Barnes 2014). However, as Fig. 2 illustrates, hierarchical networks of agents 
can be expanded to enlist multiple local agents that interact with supervisory agents 
who in turn interact with the human operator. These paradigms use network 
technology with the human operator at the apex to reduce the problem space to 
manageable proportions without abrogating human decision authority (Hou et al. 
2011; Chen and Barnes 2014). Multi-agent paradigms also have the advantage of 
being able to reconfigure the network as either the mission changes or an agent 
becomes disabled (DSB 2012). 

 
Fig. 2 Control structures for human agent teams. Robots without tools are supervisor robots, 
while robots with tools at their base are operational robots. 
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2. RoboLeader and Human-Agent Control Processes  

RoboLeader is an ARL research paradigm investigating the human performance 
implications of instantiating an IA that supervises multiple systems and in turn is 
supervised by a human operator (Chen et al. 2010). RoboLeader researchers 
simulated various missions such as surveillance, policing, and convoy operations. 
Over the course of numerous studies, IA error type and rate, task difficulty, degree 
of autonomy, individual differences, agent transparency, and type of multitasking 
were investigated (Barnes et al. 2011; Chen and Barnes 2012a,b; Wright et al. 2014; 
Chen et al. 2016). The most recent studies simulated operators engaged in convoy 
operations in which they are supervising an unmanned ground vehicle (UGV), an 
unmanned aerial vehicle (UAV), and a manned ground vehicle while conducting 
360° threat monitoring around their own vehicle (Wright et al. 2013, 2016 in press. 
The IA made convoy route change suggestions when unanticipated events occurred 
during the mission (Fig. 3). The results indicated the effects of varying reasoning 
information; succinct text explanations helped the operator reduce misuse of 
automation whereas supplying superfluous information hurt performance (Wright 
et al. 2016 in press). Multiple studies using the RoboLeader paradigm resulted in a 
better understanding of IAs contributions to military decision-making during 
manned/unmanned operations. Individual differences in gaming experience, spatial 
abilities, and an individual’s confidence in attentional control proved to be 
ubiquitous factors in human-agent interactions, implying that training and decision 
support should be geared to individual aptitudes and experience rather than “one 
size fits all” solutions (Chen and Barnes 2011, 2014).  
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Fig. 3 RoboLeader interface for convoy operations (Wright et al. 2014) 

3. Trust and Transparency: Situation-Based Agent 
Transparency Model 

Trust is an important research topic for both automated and autonomous systems 
because it mediates between the reliability of such systems and operators’ decisions 
to use them (Wickens 1994; Lyons and Havig 2014). Lee and See (2004) defined 
appropriate trust as human reliance on automation that minimizes disuse (failure to 
rely on reliable automation) and misuse (over-relying on unreliable automation)  
(Parasuraman and Riley 1997; Parasuraman and Manzey 2010; de Visser et al 
2012). Trust can be measured either as an attitude (subjective measure) or as a 
behavior (misuse and disuse) (Lyons and Stokes 2012; Meyer and Lee 2013). 
Furthermore, trust can be a predisposition of the operator (trait) or depend on 
specific circumstances (state) (Schaeffer and Scribner 2015; Schaeffer et al. 2015). 
Subjective ratings have been shown to correlate with automation reliability, 
perception of the IA capabilities, and task difficulties as well as individual 
differences (Hancock et al. 2011; Schaeffer and Scribner 2015; Schaeffer et al. 
2015). Lee (2012) suggests that in order to make the underpinnings of the 
automation algorithms transparent, the operator must be able to understand their 
purpose, process, and performance. Based on these and related concepts, ARL 
researchers (Chen et al. 2014; Chen and Barnes 2015) developed the SA-based 
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Agent Transparency (SAT) model (Fig. 4) to elucidate aspects of SA affecting trust 
(Endsley 1995, 2015b). SAT posits 3 transparency levels (Ls) of information to 
support the operator’s understanding of the IA’s decision process: L1) operator 
perception of the IA’s actions and plans, L2) comprehension of the IA’s reasoning 
process, and L3) understanding of the IA’s predicted outcomes. The purpose of the 
SAT model is to define the type of information necessary to give the operator 
insight into the IA’s intent, logic, and the perceived likelihood of obtaining its end 
state.  

 

Fig. 4 Features of the SAT model of agent transparency (Chen et al. 2014) 

3.1 Autonomy Research Pilot Initiative and Agent Transparency 
Research 

The US DOD Autonomy Research Pilot Initiative (ARPI) program is funded by the 
DOD to investigate the effects of autonomy in military environments and develop 
implementation practices based on acquired knowledge. The research is far-ranging 
and involves multiple programs. Two programs that ARL is involved in—
Intelligent Multi-UxV Planner with Adaptive Collaborative/Control Technologies 
(IMPACT) and Autonomous Squad Member (ASM)—are discussed as exemplars 
of mixed initiative systems. Because of their realistic nature, time constraints, and 
complexity, the ARPI projects are ideal platforms for evaluating operator trust and, 
in particular, the efficacy of SAT model constructs. The IMPACT project is a tri-
service program that investigates shared decision-making between multiple 
intelligent systems and the human operator for a base defense scenario in a littoral 
environment (Draper 2014). The operator’s role is to plan and supervise a mission 
with aerial, ground, and naval unmanned vehicles (UVs) that respond to suspicious 
activities related to base security (e.g., encroachments on the shore line). In typical 
mission scenarios, the base defense coordinator suggests an initial plan objective 
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referred to as a “play” (Miller and Parasuraman 2007). Then the IA/planner chooses 
available assets (UVs with sensor options) and generates the optimal route for the 
chosen platforms to attain the objective. During the mission, machine learning 
(ML) algorithms monitor progress. However, operators have final executive 
authority; they are able to tweak the plan or choose an option other than the agent’s 
preferred option. The objective of the ASM project is to investigate capabilities of 
a robotic asset to support squad-level performance during infantry missions (Chen 
and Barnes 2015; Selkowitz et al. 2016 in press). The ASM robot responds 
autonomously by adapting to squad tactics. Here again, Soldiers are the final 
arbitrators of the ASM decisions but are constrained by the fact that the ASM must 
respond rapidly to perturbations during the mission. 

3.2 Transparency and Trust: ARPI Results  

Mercado et al. (2016) tested implications of the SAT model simulating a simplified 
version of the IMPACT interface and missions. The experiment consisted of 24 
simulated IMPACT scenarios (counterbalanced among participants) broken down 
into 8 scenarios for each SAT condition (L1, L1+2, and L1+2+3). Two COAs, A 
and B, were displayed for each scenario with option A being the IA’s preferred 
COA. During the experiment, alerts were given to participants that supported option 
A in 63% of the scenarios and B in 37%. Performance improved as a function of 
increasing SAT levels; misuse and disuse both decreased for the 2 higher 
transparency level conditions. Furthermore, subjective measures of trust increased 
for SAT Level 1+2+3, showing that attitude as well as performance were positively 
affected when the operator was given projected outcome information (Meyer and 
Lee 2013). Unlike previous research, neither workload nor response latency 
measures were degraded by the additional information comprising higher SAT 
levels (Helldin 2014). Of particular note was the finding that portraying uncertainty 
information in the L3 conditions improved the participants’ subjective trust 
(Mercado et al. 2016). 

In a follow-on study, uncertainty (U) was parsed from L3 and the experimental 
conditions included L1+2 vs. L1+2+3 vs. L1+2+3+U (Stowers et al. 2016). Overall, 
uncertainty information improved operator performance. However, while the 
improvement in percentage correct was most evident in correct rejections (rejecting 
the suggested COA when the alternative was correct), Fig. 5 indicates that proper 
use (choosing the IA suggestion when it was correct) followed the same trend. 
Unlike the first experiment, measuring participants using subjective trust scales did 
not show significant improvements when uncertainty information was displayed to 
the operator (Chen et al. 2016; Stowers et al. 2016). 
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Fig. 5 Percentage correct data for levels of the SAT model in the second experiment (Stowers  
et al. 2016) 

For a different task environment involving autonomous squad members (small 
robots), the results showed that adding uncertainty information (L1+2+3) did not 
improve subjective trust, whereas reasoning cues (L1+2) improved trust over 
baseline conditions (L1) (Chen and Barnes 2015). A follow-on experiment showed 
improvements in SA and trust when prediction information was available but 
showed no advantage to adding uncertain information (Selkowitz et al. 2016 in 
press). The experiments verified the main tenets of the SAT model. That is, the 
operator was better able to adjust the agent’s plan based on environmental or 
tactical changes because of the insights afforded by transparency information 
(Mercado et al. 2016). The efficacy of adding uncertainty to prediction was unclear 
especially in the ASM environment (Selkowitz et al. 2016 in press). This is at 
variance with other research that found that portraying uncertainty improved proper 
reliance on automated systems in a variety of environments. These findings indicate 
that more research is necessary to determine in which environments and for which 
display formats displaying uncertainty is beneficial (Bass et al. 2013; Bisantz 2013; 
Chen et al. 2014; Helldin 2014).  

4. Team Communications 

Besides understanding the IA’s decision processes, humans will need to interact 
with the agent as a team member to achieve effective shared decision-making 
(Green et al. 2008). Teams are defined as 2 or more entities that collaborate (share 
decision-making) and coordinate (synchronize tasks) to accomplish common goals. 
Especially in dynamic environments, an effective team requires compatible 
knowledge structures and the ability to communicate (Morrow and Fiore 2013). 
Both characteristics assume transparency among team members to the extent that 
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decisions and actions among team members are mutually understood. Knowledge 
structures can be shared mental models or specialized models by individual 
members, but the intent of individual team members must be communicated to 
other team members for effective joint action. In the case of teams of IAs and 
humans, the underlying knowledge structures may be quite different from those 
typically found in human-human teams. For example, in the IMPACT architecture, 
the IA processing is opaque to the operator but the resultant options can be 
graphically compared in terms of the trade-offs among the different outcomes (fuel 
consumption, time to target, etc.) indicating the IA’s intended end state for each of 
the options (Behymer et al. 2015; Chen et al. 2016a,b). 

Agent architectures are still a matter of considerable research interest (Chen and 
Barnes 2014). We discuss the trade-off between processing efficiency and 
transparency for shared problem-solving in subsequent sections. Unlike a human-
human teaming relationship, natural dialogue is still difficult for unanticipated or 
unprogramed situations. However, progress in developing cognitive knowledge 
structures and natural language processing is making human-like interactions with 
agents increasingly likely for the near future (Lomas et al. 2012; Economist 2016).  

4.1 ARL Robotic Collaborative Technology Alliance and 
Computational Cognitive Models 

Cognitive models such as SOAR and ACT-R using rule-based systems, neural nets, 
and ML approaches were developed to model human information processing 
capabilities (Laird et al. 2011). Recently, cognitive models have been used to 
develop architectures to improve the robot’s capacity to navigate in real-world 
environments and solve problems such as finding a doorway, locate a particular 
item in a room, or simulate an IA that acts as a surrogate crewmember (Ball et al. 
2010; Kelley and McGhee 2013; Chen and Barnes 2014). There are a number of 
advantages to using cognitive approaches as opposed to purely algorithmic 
solutions. One is that cognitive models emulate a system that is adaptive and has 
proved successful in complex environments (i.e., the human brain), and another is 
that the similarities between the model’s knowledge representations and human 
cognition should make transfer of information easier between agents and humans. 
ARL’s Robotic Collaborative Technology Alliance has used a “find the backdoor” 
scenario both to develop the knowledge structures and the language processing 
required to control a small robot using simple commands to find a designated door.  

Kelley and colleagues (e.g., Kelley and McGhee [2013]) have developed the Sub-
Symbolic Robotics Intelligence System cognitive processing model to control 
robotic autonomous behaviors. Kelley and McGhee used the concept of episodic 
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memories to emulate cognitive processes such as using memory streams based on 
past experience (episodic memory) to address problems such as finding a back door 
in a building that required the robot to navigate around obstacles. The robotic IA 
builds software memories that are novel and those that are boring. The latter are 
memories that have little information because they do not change over time. The 
robotic agent combines the 2 types to remember when a boring memory transitions 
to a novel event in order to build a cognitive map to the correct back door solution. 
Other ARL research has used metaphors such as dreaming for knowledge 
consolidation and software constructs to represent emotions and temperament to 
make the robotic agent more accessible to its human teammate (Kelley 2014; Long 
et al. 2015). However, there is no reason to base agent intelligence solely on 
cognitive models; there are numerous useful agent technologies that are based on 
computational logic that solve specific problems efficiently (Fisher et al. 2007). 
Optimization algorithms such as Simultaneous Localization and Mapping have 
been used successfully for Army problems such as using robots to find the location 
of objects in buildings that would be unsafe for Soldiers performing the same 
function (Barnes et al. 2014). Whatever the IA’s knowledge representation, it must 
translate to formats that humans understand to help foster a common language 
between the IA and its operator.  

4.2 Language Processing 

Although compatibility of knowledge structures is important for communication, 
compatibility by itself is not sufficient for 2-way communications. Language does 
not require either text or spoken dialogue; it does require syntax, semantics, and 
pragmatics to convey meaning during 2-way communications. Pragmatics assure 
that the communication is appropriate for the intended environment. For example, 
“go to the bank” has a different interpretation depending on whether the dialogue 
refers to natural surroundings or financial transactions (Jurafsky and Martin 2009). 
Thus natural dialogue is sensitive to nuance and intention and not simply its literal 
translation (Hoare and Parker 2010). This makes open-ended natural language 
processing (NLP) difficult and possibly impractical for some combat environments 
(Harris and Barber 2014). Chen and Barnes (2014) identified 3 gradations of 
language processing: command processing, controlled language processing, and 
open-ended NLP. The levels vary both in the size of their lexicons and the 
underlying sophistication of the software. As opposed to open-ended NLP, 
command and controlled language processing are both attuned to specialized 
tasking environments. 
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4.2.1 Command Processing  

In practice, the command and the controlled processing strategies may overlap. 
However, controlled algorithms are geared to complex missions while command 
lexicons have been used successfully for limited task repertoires such as selecting 
menu options or controlling robotic movements (“move to the north of x”). The 
advantage of command processing is its simplicity and the ease in which its 
operators are able to assimilate its lexicon after limited training (Pettit et al. 2013; 
Barber et al. 2014). The lexicon is not limited to verbal utterances; successful 
interactions between humans and small robots have been demonstrated using 
gesture and tacton commands as well (Barber et al. 2013, 2015). Harris and Barber 
(2014) investigated various commercial off-the-shelf language processors to 
interpret speech for a limited domain lexicon for commanding small robots. The 
type of audio sensor and lexicon constraints influenced accuracy rate, which in 
general was fairly high (70%–80%). However, if the available online lexicon was 
much larger than the lexicon required to command the robot, they found the 
accuracy rate to be quite low (5%). The most likely reason was the increased 
likelihood of confusion between like-sounding utterances as the lexicon sized 
increased and became more open-ended. To standardize commands to the robot, 
recent efforts have focused on developing lexicons that represent Soldier speech 
patterns under realistic conditions (Barber et al. 2014), thus creating an easily 
learned lexicon of moderate dimensions.  

4.2.2 Controlled Processing  

More-sophisticated inference engines are needed for processors that enable 2-way 
communications that go beyond simple commands. Apple’s “Siri” and other 
commercial products indicate limited dialogues are possible with current 
technology. Also, because of their commercial potential, 2-way communication 
software will continue to improve, enabling human-agent interaction to mimic 
human-to-human dialogues in the near future. True dialogues involve intent 
inferencing and back and forth querying (such as, “Is this an object you wish me to 
investigate?” “No it is too oblong—check to the left about 10 meters.”) (Duplessis 
and Deviller 2015). Early agent architectures such as Belief-Desire-Intention 
modeled the agent’s processes in terms of beliefs (understanding of the 
environment), desires (objectives), and intentions (plan to achieve objectives) to 
capture an agent’s human-like qualities (Rao and Georgeff 1995; Chen and Barnes 
2014). Two recent ARL-sponsored projects demonstrate progress toward more-
mature language inferencing in military environments (Giammanco et al. 2015; 
Wang et al. 2016).  
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Controlled English (CE) is a specialized natural language representation developed 
by International Technology Alliance scientists from ARL and the United Kingdom 
(Giammanco et al. 2015; Xue at al. 2015). CE can be written by humans in English 
that is then translatable into a machine-readable format using domain semantics and 
predicate logic inferencing. Specifically, the user’s conceptual model is written in 
CE as logical inference rules representing their relationships to specific military 
and civilian environments (Giammanco et al. 2015). For example, CE algorithms 
for military intelligence applications learn from interacting with intelligence 
analysts during real-world military vignettes. The interactions result in the ability 
of the CE to make sophisticated inferences concerning intelligence processes 
mimicking a human partner performing the same function (Mott et al. 2015). The 
crucial difference between CE and simpler command processes is the ability of CE 
algorithms to infer the meaning of environmental and situational cues. 

Wang et al. (2016) simulated a self-explanatory agent that made its intentions and 
reasoning transparent to the operator using text-based messages during a simulated 
human-robot interaction task. The explanations were based on both stochastic 
reasoning by the agent and inferences about the human’s preferences. Wang et al. 
described the algorithmic process as the following: 

Decision-theoretic planning provides an agent with quantitative utility calculations 
that allow agents to assess trade-offs between alternative decisions under 
uncertainty. Recursive modeling gives the agents a theory of mind (Whiten 1991), 
allowing them to form beliefs about the human users’ preferences, factor those 
preferences into the agent’s own decisions, and update its beliefs in response to 
observations of the user’s decisions. 

Wang et al.’s agent not only provides information about its own reasoning process, 
but the IA attempts to understand the preference structure of its human teammate. 
Preliminary results suggest that participants were sensitive not only to the ability of 
the robot (its accuracy), but also to whether an agent generated an explanation for 
its action. Humans performed better (reduced misuse) and appropriately trusted 
even low-ability robots (reduced disuse) more often if participants understood the 
basis of the robot’s decision. Future objectives include generating 2-way dialogues 
based on the inferencing and language processing abilities of the IA initially in 
simulation and eventually during exercises.  

4.3 Graphic- and Video-Mediated Communications  

In a field environment, communications using chat or voice may not be as efficient 
as graphic or video representations. Researchers at Ben-Gurion University (Oron-
Gilad 2014) have collaborated with ARL to investigate the use of video feeds to 
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individual operators from both UGVs and UAVs surveilling possible insurgent 
activities for both stationary (a safe house) and mobile (car) targets. The results of 
the studies show distinct advantages to having video feeds from both ground and 
aerial views because of the advantages of giving the operator various perspectives 
of the ongoing mission (Oron-Gilad et al. 2011; Ophir-Arbelle et al. 2013; Barnes 
et al. 2014). 

In follow-on research, Oron-Gilad and colleagues (2014) simulated bi-directional 
communication between a UAV and ground forces. A human played the role of the 
IA and human surrogates played the role of the military commanders directing a 
UAV. The purpose of the experimentation was to emulate graphic representations 
that can be updated by the UAV crew or its software and annotated by the ground 
commander (e.g., “Go to target X next”) during surveillance missions. In a recent 
simulation experiment (Oron-Gilad 2014), 9 participants with Israeli Defense Force 
(IDF) combat experience played the roles of the ground commanders interacting 
with a UAV operator. The UAV operator emulated a bi-directional agent capable 
of communicating with the mission commander by annotating imagery during the 
mission. Figure 6 shows 2 bi-directional graphics generating updates from the 
surrogate commanders and the UAV crewmember. The graphic on the left 
displayed important intelligence indicators that are annotated in real time, and the 
display refreshed itself as the mission progressed (series of static images). The 
graphic on the right showed images with anchor points indicating important map 
indicators as the mission progressed.  

 
Fig. 6 Bi-directional communications between IDF commanders and a UAV using static 
(snapshots) and anchor (permanent landmarks) graphics 

The participants found that combination of transitory snapshots and anchor points 
were viable sources of tactical information using bi-directional graphics as an 
interaction tool. Future research will investigate more complex missions using 
UGV as well as UAV videos. In subsequent experiments, enhanced bi-directional 

 

  

 



 

Approved for public release; distribution is unlimited. 

17 

interfaces using audio and tactile cueing will create a richer source of mission 
information. Eventually, the research plans include an IA with limited language 
processing abilities to replace the UAV operator in the bi-directional experiment. 
In a related effort (McDermott et al. 2015), the US Army is developing advanced 
visualization and analytics tools to autonomously search for and annotate videos 
with high-value intelligence. The system developers are in the process of 
integrating analytics such as face recognition tools and developing interfaces that 
allow the operator to query the system for 2-way interactions. 

4.4 Summary of Teaming Requirements 

Human-agent teams require humans to have insight into the IA’s decision process 
and vice-versa (Chen and Barnes 2015). However, the IA must understand the 
implications of the human intentions that go beyond understanding the literal 
communications between team members (Hoare and Parker 2010). Bi-directional 
communications also require the give and take of normal conversations as each 
member of the team queries its teammate concerning the ongoing missions. The 
more closely the knowledge structures of the human-agent team are aligned, the 
more the necessity for extensive dialogue is ameliorated (Chen and Barnes 2014). 
This is important because military operations have additional constraints to 
minimize communications and to develop interfaces that are lightweight, quiet, 
easy to use, and non-observable (Barnes et al. 2014).  

5. Naturalistic Interfaces 

Shared decision-making interfaces will require advanced concepts to adhere to 
combat constraints especially for small-unit ground forces such as the ASM 
paradigm (Chen and Barnes 2015). A combination of multisensory interfaces 
improves the Soldier’s ability to adjust to multiple situations such as the necessity 
for radio silence, day and night missions, and eyes-forward and hands-free. Hill  
et al. (2015) demonstrated the utility of controlling small robots using multiple 
control devices (stylus, voice, and glove) during an Army field experiment in 2014 
(Fig. 7). The diversity of both input and display devices enabled communications 
with robots under a variety of field conditions.  
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Fig. 7 Multiple robotic control devices used in field exercise (Hill et al. 2015) 

Elliott and her ARL colleagues (Elliott et al. 2010, 2015) have investigated voice, 
gesture, and tactile communications to develop naturalistic interfaces that enhance 
the ability of the operator to control robots. The advantages of these interfaces are 
that Soldiers are not burdened by having to look down at a display, hands are freed 
to carry weapons, and Soldiers can be signaled covertly concerning both their own 
and the robot’s location. In a field experiment at Fort Benning, Georgia, Soldiers 
using a tactile vest were able to respond more rapidly and accurately than using 
traditional signaling methods during a reconnaissance mission (Elliott et al. 2016). 
For night missions in particular, tactile vests proved an important navigation aid 
(Pomranky-Hartnett et al. 2015). These findings reinforce the corpus of tactile 
research indicating the robustness of tactile communication under a variety of 
conditions (Van Erp 2007; Jones and Sarter 2008; Elliott et al. 2009; Barnes et al. 
2014; Barber et al. 2015; Elliott et al. 2015). 

The technology for gesture control systems is undergoing rapid development with 
organizations exploring multiple options because of the perceived commercial 
benefit of these devices (Elliott et al. 2016). The 2 principal approaches are camera-
based and instrumented gloves (wireless). Both approaches assume the operator is 
able to signal unambiguously, and both types depend on algorithms embedded in 
the asset (e.g., Hidden Markov Models) to disambiguate signals. The results related 
to gesture control are mixed. For example, Soldiers in Elliott et al.’s (2015) 
experiment rated the utility of instrumented gloves highly but were more accurate 
using the tablet display for robot control. Currently, various problems with gesture 
control have been noted. The systems are too bulky to be practical, signaling by the 
operator can be difficult, and there are security issues related to wireless 
transmissions (Elliott et al. 2016). Gesture control’s most likely use will be in 
conjunction with voice, visual, and tactile interfaces to supplement the difficulties 
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and advantages of each modality for particular situations. The caveat is that the 
packaging of multimodal solutions will have to become feasible (durable, wearable, 
and lightweight) for military applications (Hill et al. 2015).  

The advantage to multisensory interfaces is that they offer both practical and 
performance enhancing methods for communication between IAs (e.g., robots) and 
humans during complex military operations (Hancock et al. 2011; Barnes et al. 
2014). Nontraditional interfaces are being investigated to enable human control of 
new technologies such as robotic swarms that are holistic configurations of many 
agents that reconfigure autonomously. In a Brigham Young University study (Alder 
et al. 2015), a swarm is being developed that is controlled by a haptic interface that 
uses pressure and directional cues to “drag” the swarm around objects representing 
buildings. The user interface is designed to give the operator intuitive feedback 
during the drag operation that does not require “heads-up” visual cues. Figure 8 
shows the haptic interface control dynamics necessary to move the swarm around 
a simulated structure (Alder et al. 2015).  

 

Fig. 8 Haptic forces to move a robotic swarm in the desired configuration around a nominal 
structure (Alder et al.  2015) 

6. Summary and Discussion  

We reviewed human-agent research focusing on shared decision-making in which 
humans supervise multiple IAs that have varying degrees of autonomy (Chen et al. 
2011; Draper 2014). The scope of the report encompasses the following 5 areas of 
mixed initiative decision-making and their enabling technologies:  
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1. Control issues related to using IAs as intermediate supervisors to monitor 
n-systems that, in turn, are supervised by a human operator (Chen et al. 
2011; Chen and Barnes 2012a; Chen and Barnes 2014). 

2. Transparency and trust issues related to the operator’s understanding of the 
IA’s intent, reasoning, and projected outcomes (Chen et al. 2014; Mercado 
et al. 2016; Selkowitz et al. 2016 in press; Stowers et al. 2016).  

3. Shared knowledge structures including computational cognitive 
architectures that enable effective collaboration (Kelley 2014).  

4. Language processing software to foster 2-way communications between 
agents and humans (Giammanco et al. 2015; Wang et al. 2016).  

5. Specialized interfaces to expedite control of embodied agents using gesture, 
voice, and haptic controllers (Pettit et al. 2013; Barnes et al. 2014; Alder  
et al. 2015; Elliott et al. 2015, 2016).  

Progress in integrating these components into systems that approximate human 
teams is encouraging, but the state-of-art is still very much in the research phase 
(Chen and Barnes 2014). Needless to say, there are important issues of human-
agent collaboration that go beyond the research covered in this report. We briefly 
review some of these areas to discuss pertinent issues as grist for future research.   

Eventually, autonomous robots will be used for multiple functions including 
security, medical uses, maintenance, and transportation as well as combat roles that 
will require IAs to be part of the Soldier’s daily experience. Especially for 
embodied agents such as ground robots, IAs must fit into a social network that 
requires them to interact within human moral and emotional expectations (Jones 
and Schmidlin 2011; Fiore et al. 2013). Humans and robots will have to co-exist 
and respect each other’s space, which will require developing an etiquette to guide 
their interaction (Parasuraman and Miller 2004). IAs that collaborate with operators 
on a personal level should be designed to express and respond to nonlinguistic cues. 
Breazeal (2003, 2009) discussed the benefits and challenges of designing an 
anthropomorphic robot (“Kismet”) whose facial expression is able to convey 
emotional cues to facilitate a more natural relationship between the robot and its 
human clients. Poorly designed IAs can have negative effects as well, causing 
distrust and reluctance to share the same living space (Breazeal 2009). 

Arkin and Ulam (2009) believe that ethical considerations need to be encoded into 
robotic architectures to ensure that autonomy does not lead to dangerous behaviors. 
During military operations, autonomous decisions need to be made rapidly and 
inflexible rules could be disastrous. However, as long as software rules are 
transparent, having ethical brakes embedded into IA architectures will give its 
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human supervisor more oversight during dangerous situations (Barnes and Evans 
2010). Scheutz (2016 in press) argues that designing robots that avoid harming 
humans is not sufficient (i.e., “implicitly moral” robot). Robots need to be 
“explicitly moral”, using the same reasoning process humans make when 
encountering a difficult moral dilemma. Obviously, this is not always easy for 
either a human or an IA, but a robot can signal its operator that the actions it is 
being directed to perform have ethical consequences. For example, Briggs and 
Scheutz (2012) investigated human responses to a robot showing discomfort 
concerning destroying simulated buildings. The results indicate that robots can 
influence their human supervisors’ ethical decisions through nonexplicit behaviors. 
Whether the simulated advisories would be effective during real-world operations 
is unclear. However, an IA advising against executing an unethical or dangerous 
option would remind the operator of the consequences of the proposed actions 
(possibly via displaying projected outcomes as suggested in the SAT model–Level 
3 [Chen et al. 2014]). Advisories will be particularly effective if it is clear to the 
operator that the advisories are based on military doctrine (Endsley 2015b). The 
trade-off between speed and control, lethality and safety, and ethics and expediency 
are important issues that will permeate future IA research (Economist 2016).  

An important trend in agent technology is the greater use of ML methods. ML is 
not a single approach but rather subsumes many algorithmic and statistical methods 
such as evolutionary algorithms, Bayesian approaches, adaptive control theory, 
neural nets, and the like. Nilsson (1998), in his now classical textbook, defined ML 
as “… a machine learns whenever it changes its structure, program, or data (based 
on its inputs or in response to external information) in such a manner that its 
expected future performance improves”. There are 2 principal issues related to ML: 
1) the underlying algorithmic approach is often opaque and 2) the reasoning for 
choosing COA will change as more information is accumulated. The underlying 
logic depends on the technique used. For example, evolutionary algorithms use a 
fitness function (e.g. number of casualties) to choose a solution at each iteration 
(Suantak et al. 2001). In this case, the efficacy of the ML solution can be described 
in terms of its expected outcomes (in relation to its fitness function) as the COA 
changes over time. Because of the dynamics of military environments, ML will be 
an essential tool for IA technology (Draper 2014). Both IAs and their human 
counterparts must adapt to military environments that are in a state of continual 
flux. However, it is difficult to believe that humans will have trust in a system that 
changes its preferred solutions unless the logic and expected outcomes driving the 
changes are transparent (Chen et al. 2014). 
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7. Conclusions 

We conclude that shared decision-making between humans and IAs shows potential 
as an effective means of addressing the complexities of modern warfare. However, 
more research is needed before this potential is realized. The human’s and the 
agent’s perception of the world must be aligned to create the synergy necessary to 
take full advantage of their respective strengths and limitations. This requires 
transparency of both the human and the agent’s intent, logic, and projected 
outcomes. The agent’s software architecture must support both bi-directional 
transparency and human-agent communication. Language processing from simple 
commands to complex inferencing is maturing rapidly, making human-agent teams 
that can communicate with each other feasible in the near future. Future research 
efforts should address the effects of emotions on human-agent team building, 
ethical constraints of autonomy, and the promise and perils of machine learning.  
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